Copy of Copy of Bloomington 2017 CCR

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. After reading the 2014 CCR you will learn that your water is extremely safe to drink.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Bloomington Spring, five miles west of Bloomington.

Source water assessment and its availability

For further information please contact Shaun Turner at 208 945-1213.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

2015 finds Bloomington City in an unique position. At this time we are not requiring meters to be read for water usage, however because of the wasting of water something must be done. We are hoping that each of you will step forward and help the city conserve water. Efficient use of water helps reduce the demands on our water supplies, as well as on both drinking water and wastewater infrastructure, as using less water means moving and treating less water. The city is in the midst of repairing our wastewater infrastructure, there is a major seepage problem, into our

waste water lines, that could be greatly alleviated if each of us would be mindful and efficient in our water use. There are many ways to improve efficiency: repair broken hydrants, use of a stock nipple at the end of hoses for watering troughs, and smart watering are just a few.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit www.epa.gov/watersense for more information.

Cross Connection Control Survey

The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary.

- Boiler/ Radiant heater (water heaters not included)
- Underground lawn sprinkler system
- Pool or hot tub (whirlpool tubs not included)
- Additional source(s) of water on the property
- Decorative pond
- Watering trough

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bloomington City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bloomington City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the

State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

	MCLG	MCX	Detect	Ra	ange			
Contaminants	or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
Disinfectants & Disinfecti	on By-Prod	ucts			1			Typicar Source
(There is convincing evider	nce that addit	tion of a c	lisinfectar	nt is no	ecessar	y for con	trol of mic	robial contaminants)
Chlorine (as Cl2) (ppm)	4	4	.036	.27	.36	2016	No	Water additive used to control microbes
Microbiological Contamin	ants		7.00		100			control interobes
Total Coliform (TCR) (positive samples/month)	0	1	1	NA	NA	2016	No	Naturally present in the environment
Radioactive Contaminants	<u> </u>							environment
Radium (combined 226/228) (pCi/L)	0	5	.87	.033	.87	2016	130 1	Erosion of natural deposits
Uranium (ug/L)	0	30	.29	NA	NA	2013	1961	Erosion of natural deposits

Additional Contaminants

In an effort to insure the safest water possible the State has required us to monitor some contaminants not required by Federal regulations. Of those contaminants only the ones listed below were found in your water.

Contaminants	State MCL	Your Water	Violation	Explanation and Comment
Copper		.005 mg/L	No	Explanation and Commen
Lead		0 mg/L	No	

Init Descriptions	
Term	Definition
ug/L	ug/L: Number of micrograms of substance in one liter of water
ppm	ppm: parts per million, or milligrams per liter (mg/L)

Unit Descriptions	
pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)
positive samples/month	positive samples/month: Number of samples taken monthly that were found to be positive
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: Shawn Turner/Lisa Eborn

Address: PO Box 194 Bloomington, ID 83223 Phone: 208 945-1213

Chemical And Radiological Sampling History PWS Number: ID6040007 PWS Name: BLOOMINGTON CITY OF

Total Records: 31

A PWS is only required to report the most recent detections of any contaminant at each representative sampling location. For example, if nitrate is detected in a sample collected at Well X in 2016, but is not detected at Well X in 2017, then the system is not required to report nitrate for Well X in the 2017 CCR. Note: If a contaminant (e.g., nitrate) is listed was not detected.

Required Language. If a system reports a detection, the system must give the major sources of the contaminant. To report this information, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Major Sources in Drinking Water" column and place it in your CCR. If the system exceeds the MCL (maximum contaminant level) value of a contaminant, the system must show the potential health effects of the contaminant. To report this information, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Health Effects Language" column and place it in your CCR.

Abbreviations used below:

MG/L (mg/L) = milligrams per liter (mg/L = ppm in Appendix A)

UG/L (µg/L) = micrograms per liter (µg/L = ppb in Appendix A)

PIC/L (pCi/L) = picocuries per liter

Contaminant	Date Collected	Facility	Non Detect?	Detected Level		CHOOCHING THE CONTRACTOR
1,1,1-TRICHLOROETHANE	09/25/2013	SPRING	Y		Units	CCR Units
1,1,2-TRICHLOROETHANE	09/25/2013	SPRING	Y	0.000		0.000
1,1-DICHLOROETHYLENE	09/25/2013	SPRING	Y	0.000	1410011	0.000
1,2,4-TRICHLOROBENZENE	09/25/2013	SPRING		0.000		0.000
1,2-DICHLOROETHANE	09/25/2013	SPRING	Y	0.000		0.000
1,2-DICHLOROPROPANE	09/25/2013	SPRING	Y	0.000		0.000
BENZENE	09/25/2013	SPRING	Y	0.000		0.000
CARBON TETRACHLORIDE	09/25/2013		Y	0.000		0.000
CHLOROBENZENE	09/25/2013	SPRING	Y	0.000		0.000
CIS-1,2-DICHLOROETHYLENE	09/25/2013	SPRING	Y	0.000		0.000
OMBINED RADIUM (-226 & -228)	08/08/2016	SPRING	Y	0.000		0.000
COMBINED URANIUM	09/25/2013	SPRING		0.903	PCI/L	0.903
DICHLOROMETHANE	09/25/2013	SPRING	N	0.290	UG/L	0.290
THYLBENZENE		SPRING	Υ	0.000	1 -5:-	0.000
ROSS ALPHA, INCL. RADON & U	09/25/2013	SPRING	Y	0.000		0.000
ITRATE	08/08/2016	SPRING	N	1.180	PCI/L	1.180
ITRATE	11/29/2017	SPRING	Y	0.000	1 0 11 1	0.000
ITRATE	08/08/2016	SPRING	Y	0.000		0.000
ITRATE	09/03/2015	SPRING	Y	0.000		0.000
ITRATE	12/15/2014	SPRING	Y	0.000		
-DICHLOROBENZENE	09/25/2013	SPRING	Y	0.000	-	0.000
-DICHLOROBENZENE	09/25/2013	SPRING	Y	0.000		0.000
ADIUM-226	09/25/2013	SPRING	Y	0.000		0.000
ADIUM-228	08/08/2016	SPRING	N	0.033	PCI/L	0.000
TYRENE	08/08/2016	SPRING	N	0.870		0.033
TRACHLOROETHYLENE	09/25/2013	SPRING	Y	0.000	PCI/L	0.870
OLUENE	09/25/2013	SPRING	Y	0.000		0.000
	09/25/2013	SPRING	Ÿ	0.000		0.000
RANS-1,2-DICHLOROETHYLENE	09/25/2013	SPRING	Ÿ			0.000
RICHLOROETHYLENE	09/25/2013	SPRING	Y	0.000		0.000
NYL CHLORIDE	09/25/2013	SPRING	Y	0.000		0.000
YLENES, TOTAL	09/25/2013	SPRING	- 1 V	0.000		0.000
***************************************		10. 110	T I	0.000		0.000

Coliform Sampling History PWS Number: ID6040007 PWS Name: BLOOMINGTON CITY OF Total Records: 16

Only report coliform results in the CCR if one or more samples tested positive during the 2017 calendar year.

Required Language. If your water system's coliform history for the year included one or more samples present for coliform, you must give the major sources of the contaminant. To report this information, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Major Sources in Drinking Water" column and place it in your CCR. If the system has exceeded the MCL (maximum contaminant level) value for coliforms, go to Appendix A place it in your CCR.

Contaminant	Date Collected	
COLIFORM (TCR)		P=Present A=Absent
COLIFORM (TCR)	12/14/2017	A
COLIFORM (TCR)	11/29/2017	A
COLIFORM (TCR)	10/12/2017	
COLIFORM (TCR)	09/14/2017	A
COLIFORM (TCR)	08/23/2017	A
OLIFORM (TCR)	07/21/2017	A
OLIFORM (TCR)	06/29/2017	A
OUTORM (TCR)	06/01/2017	Α
OLIFORM (TCR)	06/01/2017	A
OLIFORM (TCR)	06/01/2017	A
OLIFORM (TCR)	05/30/2017	Α Α
COLI	05/30/2017	P
OLIFORM (TCR)		Α
OLIFORM (TCR)	04/28/2017	A
OLIFORM (TCR)	03/14/2017	A
OLIFORM (TCR)	02/23/2017	A
	01/19/2017	A

Effects Language" column and place it in your CCR.

Abbreviations used below:

MG/L (mg/L) = milligrams per liter (mg/L = ppm in Appendix A) UG/L (μ g/L) = micrograms per liter (μ g/L = ppb in Appendix A)

Contaminant	# Samples Collected	90th %ile Result	111-14-		
AD SUMMARY	5	0.003	Units	Date Collected	CCR Units
OPPER SUMMARY	5		MG/L	09/28/2015	3.000
	AND ORGANICA AND AND AND AND AND AND AND AND AND AN	0.080	MG/L	09/28/2015	0.080

Lead And Copper Sampling History PWS Number: ID6040007 PWS Name: BLOOMINGTON CITY OF Total Records: 2

A public water system is only required to report the most recent 90% percentile detections for lead and copper within the past five years. If a result is listed as zero, it should be assumed the result was actually a non-detect.

Other lead and copper information to be included in the CCR not listed on this page are the number of samples collected from the distribution system, and the highest level of lead or copper that was detected.

Required Language. If there are detections for lead and copper to report, the system must give the major sources of the contaminant. If a system reports a detection, the system must give the major sources of the contaminant. To report this information, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Major Sources in Drinking Water" column and place it in your CCR. If the system exceeds the MCL (maximum contaminant level) value of a contaminant, the system must show the potential health effects of the contaminant. To report this

DBP Sampling History
PWS Number: ID6040007
PWS Name: BLOOMINGTON CITY OF
Total Records: 10

Sampling history is only listed for systems which are practicing chlorination on a full-time basis.

Public water systems that are required to collect one sample for disinfection byproducts once every year, or every three years, are only required to report the most recent detections for disinfection byproducts. If the most recent sampling was a non-detect for the contaminants, then it is not necessary to report any disinfection byproduct sampling. Note: If a contaminant is listed with a "Y" (meaning "Yes") in the "non-detect" column, this means that sampling results showed a "non-detect" - that is to say, the contaminant was not detected.

If a public water system collects more than one sample per year, the system must report the average of Total Trihalomethanes and Haloacetic Acids Group 5 over the 2017 calendar year. The highest level detected, and the range for each contaminant must also be reported.

Required Language. If a system reports a detection, the system must give the major sources of the contaminant. To report this information, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Major Sources in Drinking Water" column and place it in your CCR. If the system has exceeded the MCL (maximum contaminant level) value of a contaminant, go to Appendix A of the CCR template, find the contaminant, and copy the information from the "Health Effects Language" column and place it in your CCR.

Contaminant	Date Collected	Sampling Location	T NI D I			
OTAL HALOACETIC ACIDS (HAA5)	08/08/2016		Non Detect?	Detected Level	Units	CCR Units
OTAL HALOACETIC ACIDS (HAA5)		400 N 50 E	Y	0.000	-	
OTAL HALOAGETIC ACIDS (HAAS)	09/25/2013	GENERIC SAMPLING POI	Y	0.000		0.000
OTAL HALOACETIC ACIDS (HAA5)	09/25/2013	GENERIC SAMPLING POI	·			0.000
OTAL HALOACETIC ACIDS (HAA5)	08/26/2009	GENERIC SAMPLING POL	T	0.000		0.000
OTAL HALOACETIC ACIDS (HAA5)	08/28/2008		Y	0.000		0.000
ГНМ		GENERIC SAMPLING POI	Υ	0.000	MG/L	0.000
ТНМ	08/08/2016	400 N 50 E	Y	0.000	IVIOIL	
	09/25/2013	GENERIC SAMPLING POI	·			0.000
HM		GENERIC SAMPLING POI	I I	0.000		0.000
ΓHM.		CENERIC SAMPLING POI	Y	0.000		0.000
THM		GENERIC SAMPLING POI	N	2.190	UG/L	2.190
	08/28/2008	GENERIC SAMPLING POI	Y	0.000	MG/L	0.000

RTCR Sampling History PWS Number: ID6040007 PWS Name: BLOOMINGTON CITY OF Total Records: 0

Only report if your water system was required to comply with one or more Revised Total Coliform Rule (RTCR) Level 1 and/or Level 2 Assessments during the 2017 calendar year.

Required Language: If your water system was required to conduct an RTCR Level 1 or Level 2 Assessment (numbers I-III below), the associated information must be reported in the CCR in accordance with IDAPA 58.01.08.151.

- I. If your water system was required to conduct a Level 1 or 2 assessment <u>not</u> due to an *E. coli* MCL violation, go to section I below.
 - II. If your water system was required to conduct a Level 2 assessment <u>due</u> to an *E. coli* MCL violation, go to section II below.
 - III. If your water system detected E. coli and did not violate the E. coli MCL, go to section III below.
 - I. If your water system was required to conduct a Level 1 or 2 assessment <u>not</u> due to an *E.coli* MCL violation, you must include in the report adverse health affect information and additional information regarding the number of assessments required, the number of assessments completed, the number of corrective actions required and the number of corrective actions completed.
 - (A) Adverse Health Effects Required Text: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

(B) Additional Information Required:

- a. During the past year we were required to conduct [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s). [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s) were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.
- b. During the past year [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were required to be completed for our water system. [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.
- c. Any system that has failed to complete all the required assessments or correct all identified sanitary defects, is in violation of the treatment technique requirement and must also include one or both of the following statements, as appropriate:
 - i. During the past year we failed to conduct all of the required assessment(s).
 - ii. During the past year we failed to correct all identified defects that were found during the assessment.

- II. If your water system was required to conduct a Level 2 assessment <u>due</u> to an *E.coli* MCL violation, you must include in the report adverse health affect information and additional information regarding the number of assessments required, the number of assessments completed, the number of corrective actions required and the number of corrective actions completed.
 - (A) Adverse Health Effects Required Text: *E. coli* are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

(B) Additional Information Required:

- a. We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.
- b. Any system that has failed to complete the required assessment or correct all identified sanitary defects, is in violation of the treatment technique requirement and must also include one or both of the following statements, as appropriate:
 - i. We failed to conduct the required assessment.
 - ii. We failed to correct all sanitary defects that were identified during the assessment that we conducted.
- c. Any system that violated the *E. coli* MCL, the system must include, in addition to the required adverse health effects text [see II.(A) above], one or more of the following statements to describe any noncompliance, as applicable:
 - i. We had an E. coli-positive repeat sample following a total coliform-positive routine sample.
 - ii. We had a total coliform-positive repeat sample following an E. coli-positive routine sample.
 - iii. We failed to take all required repeat samples following an E. coli-positive routine sample.
 - iv. We failed to test for E. coli when any repeat sample tests positive for total coliform.
- III. If your water system detected *E. coli* and did not violate the *E. coli* MCL, the system may include, in addition to the required adverse health effects text [See II.(A) above], a statement that explains that although *E. coli* water detected, your system was not in violation of the *E. coli* MCL.

No results were found for the RTCR Sampling History Report.

Chlorine Maximum Residual Disinfectant Level Sampling History PWS Number: ID6040007

PWS Name: BLOOMINGTON CITY OF
Total Records: 12

Sampling history is only listed for systems which are practicing chlorination on a full-time basis.

Please include in your CCR the highest chlorine residual level detected during the previous calendar year (2017) by your system, as well as the average of all residuals collected during 2017.

Required Language. If the system exceeds the chlorine MCL (maximum contaminant level) value, the system must show the potential health effects of the contaminant. To report this information, go to **Appendix A of the CCR template**, find the contaminant, and copy the information from the "Health Effects Language" column and place it in your CCR.

Samples Collected	Chlorine Residual	Units	Begin Date		
1	0.2900			Monitoring Period	
1		MG/L	01/01/2017	JAN2017	
7 1	0.2900	MG/L	02/01/2017	FEB2017	
	0.3100	MG/L	03/01/2017		
1	0.3400	MG/L		MAR2017	
4	0.2800	MG/L	04/01/2017	APR2017	
1	0.2400		05/01/2017	MAY2017	
1		MG/L	06/01/2017	JUN2017	
1	0.2900	MG/L	07/01/2017	JUL2017	
	0.2900	MG/L	08/01/2017		
1	0.2900	MG/L	09/01/2017	AUG2017	
_1	0.2600	MG/L		SEP2017	
1	0.2400		10/01/2017	OCT2017	
1		MG/L	11/01/2017	NOV2017	
	0.2900	MG/L	12/01/2017	DEC2017	